Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473087

RESUMO

The West African giraffe (Giraffa camelopardalis peralta) was historically spread across much of the Sudano-Sahelian zone but is now restricted to Niger. Several factors resulted in their dramatic decline during the late 20th century. In 1996, only 49 individuals remained, concentrated in the 'Giraffe Zone'. Conservation activities implemented by the Government of Niger, supported by local communities and NGOs, facilitated their population numbers to increase. This review summarizes past and present conservation activities and evaluates their impact to advise and prioritize future conservation actions for the West African giraffe. The long-term conservation of the West African giraffe is highly dependent on the local communities who live alongside them, as well as supplementary support from local and international partners. Recent conservation initiatives range from community-based monitoring to the fitting of GPS satellite tags to better understand their habitat use, spatial movements to expansion areas, and environmental education to the establishment of the first satellite population of West African giraffe in Gadabedji Biosphere Reserve, the latter serving as a flagship for the future restoration of large mammal populations in West Africa. The integration of modern technologies and methods will hopefully provide better-quality data, improved spatial analyses, and greater understanding of giraffe ecology to inform the long-term management of West African giraffe.

2.
BMC Biol ; 21(1): 215, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833744

RESUMO

BACKGROUND: In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa. RESULTS: We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe. CONCLUSIONS: Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.


Assuntos
Girafas , Animais , Girafas/genética , Quênia , Genômica , Genoma , Hibridização Genética
3.
J Wildl Dis ; 59(3): 472-478, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269548

RESUMO

Congenital deformities and neoplasia are poorly documented in wildlife, owing to the difficulty of detection in wild populations. Congenital deformities may lead to premature mortality, thus reducing the chances of thorough documentation. Importantly, neoplasia diagnoses depend on either sampling suspicious lesions from living individuals or access to fresh, undisturbed carcasses, which can prove challenging. We describe five cases of suspected congenital cranial deformities (midfacial cleft, wry nose, and brachygnathia inferior) and two possible cases of cranial neoplasia (orbital bone mass and a soft tissue mass) opportunistically observed in wild giraffe (Giraffa spp.) across their range in Africa. Although cases are largely limited to subjective description because physical examination is often not possible, it is critical to document such observations to help identify and track potential health concerns in wild giraffe populations.


Assuntos
Girafas , Neoplasias , Animais , Ruminantes , Crânio , Animais Selvagens , Neoplasias/veterinária
4.
Proc Biol Sci ; 290(2001): 20230912, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357852

RESUMO

Animal movement behaviours are shaped by diverse factors, including resource availability and human impacts on the landscape. We generated home range estimates and daily movement rate estimates for 149 giraffe (Giraffa spp.) from all four species across Africa to evaluate the effects of environmental productivity and anthropogenic disturbance on space use. Using the continuous time movement modelling framework and a novel application of mixed effects meta-regression, we summarized overall giraffe space use and tested for the effects of resource availability and human impact on 95% autocorrelated kernel density estimate (AKDE) size and daily movement. The mean 95% AKDE was 359.9 km2 and the mean daily movement was 14.2 km, both with marginally significant differences across species. We found significant negative effects of resource availability, and significant positive effects of resource heterogeneity and protected area overlap on 95% AKDE size. There were significant negative effects of overall anthropogenic disturbance and positive effects of the heterogeneity of anthropogenic disturbance on daily movements and 95% AKDE size. Our results provide unique insights into the interactive effects of resource availability and anthropogenic development on the movements of a large-bodied browser and highlight the potential impacts of rapidly changing landscapes on animal space-use patterns.


Assuntos
Ecossistema , Girafas , Humanos , Animais , Efeitos Antropogênicos , Movimento , África
5.
Science ; 380(6649): 1059-1064, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289888

RESUMO

COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.


Assuntos
Migração Animal , Animais Selvagens , COVID-19 , Mamíferos , Quarentena , Animais , Humanos , Animais Selvagens/fisiologia , Animais Selvagens/psicologia , COVID-19/epidemiologia , Mamíferos/fisiologia , Mamíferos/psicologia , Movimento
6.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247232

RESUMO

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

7.
Vet Pathol ; 59(3): 467-475, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35311406

RESUMO

Giraffe skin disease (GSD) is an emerging disease of free-ranging giraffe recognized in the last 25 years in several species, including the critically endangered Nubian giraffe (Giraffa camelopardalis camelopardalis) of Uganda. Identifying the cause of GSD and understanding its impact on health were deemed paramount to supporting these vulnerable populations. Sixty-four giraffes were immobilized in Murchison Falls National Park, Uganda, from 2017 to 2019, and GSD lesions were opportunistically biopsied. Fifty-five giraffes (86%) had GSD lesions on the neck, axilla, chest, and cranial trunk. Lesions were categorized into early, intermediary, and dormant stages based on gross and histological characteristics. Early lesions were smaller, crusted nodules with eosinophilic and pyogranulomatous dermatitis and furunculosis. Intermediary lesions were thick plaques of proliferative and fissured hyperkeratosis and acanthosis with dense dermal granulation tissue and severe eosinophilic and granulomatous dermatitis. Lesions appeared to resolve to dormancy, with dormant lesions consisting of hairless plaques of hyperkeratosis with dermal scarring and residual inflammation. The periphery of early and intermediary lesions included follicular granulomas containing adult filarid nematodes, with myriad encysted microfilariae in the superficial dermis. Stage L3 larvae were common in early and intermediary lesions, and dormant lesions had remnant encysted microfilariae with no adult or stage L3 larvae. Nematodes were morphologically and genetically novel with close identity to Stephanofilaria spp. and Brugia malayi, which cause infectious filariasis. Identification of potential insect vectors, long-term monitoring of GSD lesions, and evaluating response to therapy is ongoing in the efforts to help conserve the Nubian giraffe.


Assuntos
Dermatite , Filariose , Girafas , Dermatopatias , Animais , Dermatite/patologia , Dermatite/veterinária , Filariose/patologia , Filariose/veterinária , Pele/patologia , Dermatopatias/patologia , Dermatopatias/veterinária
8.
Genes (Basel) ; 13(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35205265

RESUMO

Three of the four species of giraffe are threatened, particularly the northern giraffe (Giraffa camelopardalis), which collectively have the smallest known wild population estimates. Among the three subspecies of the northern giraffe, the West African giraffe (Giraffa camelopardalis peralta) had declined to 49 individuals by 1996 and only recovered due to conservation efforts undertaken in the past 25 years, while the Kordofan giraffe (Giraffa camelopardalis antiquorum) remains at <2300 individuals distributed in small, isolated populations over a large geographical range in Central Africa. These combined factors could lead to genetically depauperated populations. We analyzed 119 mitochondrial sequences and 26 whole genomes of northern giraffe individuals to investigate their population structure and assess the recent demographic history and current genomic diversity of West African and Kordofan giraffe. Phylogenetic and population structure analyses separate the three subspecies of northern giraffe and suggest genetic differentiation between populations from eastern and western areas of the Kordofan giraffe's range. Both West African and Kordofan giraffe show a gradual decline in effective population size over the last 10 ka and have moderate genome-wide heterozygosity compared to other giraffe species. Recent inbreeding levels are higher in the West African giraffe and in Kordofan giraffe from Garamba National Park, Democratic Republic of Congo. Although numbers for both West African and some populations of Kordofan giraffe have increased in recent years, the threat of habitat loss, climate change impacts, and illegal hunting persists. Thus, future conservation actions should consider close genetic monitoring of populations to detect and, where practical, counteract negative trends that might develop.


Assuntos
Girafas , Animais , Genoma , Genômica , Geografia , Girafas/genética , Filogenia
9.
PLoS One ; 16(12): e0252929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914724

RESUMO

Foot health in zoo giraffe has been a topic of recent research, although little is known about the foot health of free-ranging giraffe. This study describes the foot shape and radiographic pathological changes in 27 young adult Nubian giraffe (Giraffa camelopardalis camelopardalis) from a translocation in Uganda (August 2017). Giraffe feet were observed to have a concave sole, the hoof wall was longest by the toe tip, and the weight-bearing surface of the foot was primarily along the periphery of the foot including hoof wall, parts of the heel, and the edge of the sole. Radiographs showed that pedal osteitis and sesamoid bone cysts were relatively uncommon (3/24 giraffe with osteitis, 1/24 giraffe with sesamoid cysts), and that no giraffe in the study had P3 joint osteoarthritis, P3 rotation, or P3 fractures. Radiographs consistently demonstrated a positive palmar/plantar angle with the sole of the hoof thicker at the heel than by the toe tip, with the non weight-bearing palmar/plantar angle measuring 1.6°- 4.3°. This is the first systematic review of foot shape and radiographs in free-ranging giraffe and demonstrates a low prevalence of foot pathologies. This study suggests qualitative differences in foot shape, foot health, radiographic anatomy, and foot pathologies when comparing free-ranging and zoo giraffe. Further research is needed to identify why these differences occur and whether husbandry modifications could help improve zoo giraffe foot health and prevent associated lameness.


Assuntos
Fraturas Ósseas/diagnóstico por imagem , Girafas , Extremidade Inferior/diagnóstico por imagem , Osteíte/diagnóstico por imagem , Animais , Fraturas Ósseas/veterinária , Casco e Garras , Osteíte/veterinária , Uganda
10.
Curr Biol ; 31(13): 2929-2938.e5, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33957077

RESUMO

Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230-370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.


Assuntos
Genoma/genética , Genômica , Girafas/classificação , Girafas/genética , Filogenia , Animais , Fluxo Gênico , Masculino , Especificidade da Espécie
11.
Ecol Evol ; 10(21): 11954-11965, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209262

RESUMO

Scientists are increasingly using volunteer efforts of citizen scientists to classify images captured by motion-activated trail cameras. The rising popularity of citizen science reflects its potential to engage the public in conservation science and accelerate processing of the large volume of images generated by trail cameras. While image classification accuracy by citizen scientists can vary across species, the influence of other factors on accuracy is poorly understood. Inaccuracy diminishes the value of citizen science derived data and prompts the need for specific best-practice protocols to decrease error. We compare the accuracy between three programs that use crowdsourced citizen scientists to process images online: Snapshot Serengeti, Wildwatch Kenya, and AmazonCam Tambopata. We hypothesized that habitat type and camera settings would influence accuracy. To evaluate these factors, each photograph was circulated to multiple volunteers. All volunteer classifications were aggregated to a single best answer for each photograph using a plurality algorithm. Subsequently, a subset of these images underwent expert review and were compared to the citizen scientist results. Classification errors were categorized by the nature of the error (e.g., false species or false empty), and reason for the false classification (e.g., misidentification). Our results show that Snapshot Serengeti had the highest accuracy (97.9%), followed by AmazonCam Tambopata (93.5%), then Wildwatch Kenya (83.4%). Error type was influenced by habitat, with false empty images more prevalent in open-grassy habitat (27%) compared to woodlands (10%). For medium to large animal surveys across all habitat types, our results suggest that to significantly improve accuracy in crowdsourced projects, researchers should use a trail camera set up protocol with a burst of three consecutive photographs, a short field of view, and determine camera sensitivity settings based on in situ testing. Accuracy level comparisons such as this study can improve reliability of future citizen science projects, and subsequently encourage the increased use of such data.

12.
Behav Processes ; 178: 104178, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562740

RESUMO

Natural cycles of light and darkness shift the balance of risks and gains for animals across space and time. Entrainment to photic cycles allows animals to spatiotemporally adapt their behavioural and physiological processes in line with interplaying ecological factors, such as temperature, foraging efficiency and predation risk. Until recently, our understanding of these chronobiological processes was limited by the difficulties of 24 h observations. Technological advances in GPS biotelemetry however are now allowing us unprecedented access to long-term, fine-scale activity data. Here we use data derived from frontline technology to present the first large-scale investigation into the effects of natural fluctuations of light and darkness on the locomotor activity patterns of a threatened African mega-herbivore, the giraffe (Giraffa spp.). Using data from a remote population of Angolan giraffe (G. g. angolensis) in the northern Namib Desert, Namibia, we reveal the first full picture of giraffe chronobiology in a landscape of fear. Furthermore, we present clear evidence of the effect of moonlight on the nocturnal activity patterns of large ungulates. Our results are in line with recent research demonstrating that, rather than a fixed internal representation of time (circadian clock), many surface-dwelling ungulates have plastic activity patterns that are vulnerable to modification by external factors including light and temperature. Relatedly, we highlight important conservation management implications of rising temperatures and increasing light pollution on the chronobiology of surface-dwelling mammals.


Assuntos
Girafas , Animais , Ritmo Circadiano , Escuridão , Locomoção , Comportamento Predatório
13.
Conserv Biol ; 34(4): 1017-1028, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32362060

RESUMO

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.


Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15% y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Comportamento de Retorno ao Território Vital , Humanos
14.
Ecol Evol ; 10(6): 2917-2927, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211165

RESUMO

This study presents the first findings on nocturnal behavior patterns of wild Angolan giraffe. We characterized their nocturnal behavior and analyzed the influence of ecological factors such as group size, season, and habitat use. Giraffe were observed using night vision systems and thermal imaging cameras on Okapuka Ranch, Namibia. A total of 77 giraffe were observed during 24 nights over two distinct periods-July-August 2016 (dry season) and February-March 2017 (wet season). Photoperiod had a marked influence on their activity and moving behavior. At dusk, giraffe reduced the time spent moving and increasingly lay down and slept at the onset of darkness. Body postures that likely correspond to rapid eye movement (REM) sleep posture (RSP) were observed 15.8 ± 18.3 min after giraffe sat down. Season had a significant effect with longer RSP phases during the dry season (dry: 155.2 ± 191.1 s, n = 79; wet: 85.8 ± 94.9 s, n = 73). Further analyses of the influence of social behavior patterns did not show an effect of group size on RSP lengths. When a group of giraffe spent time at a specific resting site, several individuals were alert (vigilant) while other group members sat down or took up RSP. Simultaneous RSP events within a group were rarely observed. Resting sites were characterized by single trees or sparse bushes on open areas allowing for good visibility in a relatively sheltered location.

15.
Ecol Evol ; 9(19): 11395-11405, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641481

RESUMO

Population numbers of Kordofan giraffe (Giraffa camelopardalis antiquorum) have declined throughout its range by more than 85% in the last three decades, including in the isolated easternmost population found in the Garamba National Park (NP) in the Democratic Republic of Congo.We provide new data on the conservation status and ecology of Kordofan giraffe in Garamba NP, specifically on the current population dynamics, distribution patterns, and spatial ecology for informed conservation management decisions.Data were gathered between September 26, 2016, and August 17, 2017, through direct observation and from eight GPS satellite collars deployed in early 2016. Movements, distribution patterns, and autocorrelated kernel density home ranges were estimated using the Continuous-Time Movement Modeling (CTMM) framework. We then compared results with home ranges calculated using the kernel density estimation (95% KDE) method.The Garamba NP population was estimated to be 45 giraffe with a female-dominated sex ratio (35% males; 65% females), and adult-dominated age class ratio (11.2% juveniles; 17.7% subadults; 71.1% adults). The giraffe's distribution was limited to the south-central sector of the Park, and giraffe were divided over different areas with some degree of connectivity. The average giraffe home range size was 934.3 km2 using AKDE and 268.8 km2 using KDE. Both methods have shown surprisingly large home ranges despite of the relatively high humidity of Garamba NP.Based on the outcomes of this research, urgent conservation action is needed to protect Garamba's remaining giraffe population.

16.
Ecol Evol ; 8(20): 10156-10165, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397455

RESUMO

All giraffe (Giraffa) were previously assigned to a single species (G. camelopardalis) and nine subspecies. However, multi-locus analyses of all subspecies have shown that there are four genetically distinct clades and suggest four giraffe species. This conclusion might not be fully accepted due to limited data and lack of explicit gene flow analyses. Here, we present an extended study based on 21 independent nuclear loci from 137 individuals. Explicit gene flow analyses identify less than one migrant per generation, including between the closely related northern and reticulated giraffe. Thus, gene flow analyses and population genetics of the extended dataset confirm four genetically distinct giraffe clades and support four independent giraffe species. The new findings support a revision of the IUCN classification of giraffe taxonomy. Three of the four species are threatened with extinction, and mostly occurring in politically unstable regions, and as such, require the highest conservation support possible.

17.
Science ; 359(6374): 466-469, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371471

RESUMO

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.


Assuntos
Migração Animal , Atividades Humanas , Mamíferos , Animais , Sistemas de Informação Geográfica , Humanos
18.
Curr Biol ; 27(4): R137-R138, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28222288

RESUMO

It is not unexpected that a proposal, such as ours [1], of four new mammalian species stirs up controversy, as evident in the correspondence by Bercovitch et al.[2]. We appreciate that their concerns are unrelated to the quality of the genetic data, the methodological approach or analyses, but are focused on the interpretation. Thus, we provided an analysis of giraffe speciation based on genomic sequence data, and not just "another viewpoint on giraffe taxonomy" [2]. We maintain our perspective that there is not only one but four species of giraffe (Figure 1).


Assuntos
Girafas , Animais , Genômica , Mamíferos
19.
Curr Biol ; 26(18): 2543-2549, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27618261

RESUMO

Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal.


Assuntos
Especiação Genética , Girafas/classificação , Girafas/genética , África , Animais , DNA Mitocondrial/genética , Variação Genética , Tipagem de Sequências Multilocus , Filogenia
20.
BMC Evol Biol ; 14: 219, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25927851

RESUMO

BACKGROUND: The current taxonomy of the African giraffe (Giraffa camelopardalis) is primarily based on pelage pattern and geographic distribution, and nine subspecies are currently recognized. Although genetic studies have been conducted, their resolution is low, mainly due to limited sampling. Detailed knowledge about the genetic variation and phylogeography of the South African giraffe (G. c. giraffa) and the Angolan giraffe (G. c. angolensis) is lacking. We investigate genetic variation among giraffe matrilines by increased sampling, with a focus on giraffe key areas in southern Africa. RESULTS: The 1,562 nucleotides long mitochondrial DNA dataset (cytochrome b and partial control region) comprises 138 parsimony informative sites among 161 giraffe individuals from eight populations. We additionally included two okapis as an outgroup. The analyses of the maternally inherited sequences reveal a deep divergence between northern and southern giraffe populations in Africa, and a general pattern of distinct matrilineal clades corresponding to their geographic distribution. Divergence time estimates among giraffe populations place the deepest splits at several hundred thousand years ago. CONCLUSIONS: Our increased sampling in southern Africa suggests that the distribution ranges of the Angolan and South African giraffe need to be redefined. Knowledge about the phylogeography and genetic variation of these two maternal lineages is crucial for the development of appropriate management strategies.


Assuntos
DNA Mitocondrial/genética , Ruminantes/classificação , Ruminantes/genética , África Austral , Angola , Animais , Sequência de Bases , Citocromos b/genética , DNA Mitocondrial/análise , Feminino , Variação Genética , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...